

Construction and Performance of Network Codes.

J. de Curtò

Cerdanyola del Vallès (Barcelona), 2013.

2 Lattice Network Codes

3 C&F

- 4 C&F HAMMING
- 5 Improvement of the Coefficients

6 Conclusions

2 Lattice Network Codes

3 C&F

- 4 C&F HAMMING
- 5 Improvement of the Coefficients

6 Conclusions

Physical-layer Network Coding

Introduction

Today

Interference is treated as a destructive phenomenon.

Network Coding Introduced the Idea

Intermediate nodes in a network are able to perform operations to the input packets rather than just forwarding them.

Network Coding at the Physical-layer? PNC

When multiple electromagnetic waves come together within the same physical space, they add. This additive mixing of electromagnetic waves is a form of Network Coding, performed by nature. PNC aims to exploit this fact.

Physical-layer Network Coding

Main ideas

The Source Transmits a Message

 $w_l \in \mathbb{F}_p^k$, where \mathbb{F}_p is a finite field with p elements $\{0, 1, 2..., p-1\}$ and p is a prime number.

The Relay Decodes a Linear Combination v of these Messages

 $v = a_1 w_1 \oplus a_2 w_2 \oplus \ldots a_L w_L$, where a_l are coefficients over the finite field \mathbb{F}_p .

The Destination Can Solve For the Original Messages if				
A =	$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{M1} \end{bmatrix}$	a ₁₂ a ₂₂ : a _{M2}	a _{1L} a _{2L} : a _{ML}	has rank <i>L</i> .

Physical-layer Network Coding

Example

2 Lattice Network Codes

3 C&F

- 4 C&F HAMMING
- 5 Improvement of the Coefficients

6 Conclusions

Lattice Network Codes

Introduction

What Are We Looking For?

If the waveforms at the transmitter are points of a lattice (that is \mathbb{Z} or $\mathbb{Z}[i]$), then every integer combination of these waveforms is itself a point of the same lattice.

The Algebraic Structure Necessary Is

Given a *R*-lattice Λ (e.g. $\mathbb{Z}[i]$) and a sublattice Λ' of Λ (e.g. $\pi\mathbb{Z}[i]$), the quotient group Λ/Λ' (e.g. $\frac{\mathbb{Z}[i]}{\pi\mathbb{Z}[i]}$) is a *R*-module. For a Lattice Network Code, the message space is $W = \Lambda/\Lambda'$.

Let's See a Bit More of Insight

The R/aR structure, being R a PID and a prime, forms a field. Thus, we will be able to find an isomorphism between $\mathbb{F}_p = \frac{\mathbb{Z}}{p\mathbb{Z}}$ and $\frac{\mathbb{Z}[i]}{\pi\mathbb{Z}[i]}$ if both fields have the same number of elements.

Lattice Network Codes

GAUSSIAN Integers

 $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}.$

Prime Factorization Used

If $p \equiv 1 \mod 4$ then $p = \pi \pi^*$ is a product of two conjugate primes π , π^* .

Example

The prime p = 5 satisfies $5 \equiv 1 \mod 4$, so 5 has two conjugate GAUSSIAN prime factors. Since $5 = 1^2 + 2^2$, 5 = (1 + 2i)(1 - 2i).

2 Lattice Network Codes

3 C&F

- 4 C&F HAMMING
- 5 Improvement of the Coefficients

6 Conclusions

3 C&F C&F System: Scalar Case C&F System: Vectorial Case

C&F System: Scalar Case System Model

Universitat Autònoma de Barcelona

$$\begin{split} \mu(w_l) &= w_l \mod \pi = w_l - \left[\frac{w_l \pi^*}{\pi \pi^*} \right] \pi \\ \mu^{-1}(z) &= z \mod p = (z^* u \pi + z v \pi^*) \mod p \\ y &= h_1 x_1 + h_2 x_2 + \ldots + h_L x_L + z \\ \hat{v} &= a_1 w_1 \oplus a_2 w_2 \oplus \ldots \oplus a_L w_L \end{split}$$

De Curtò i DíAz. — Construction and Performance of Network Codes.

12/33

C&F System: Scalar Case Performance

UAB Universitat Autònoma de Barcelona

3 C&F C&F System: Scalar Case C&F System: Vectorial Case

C&F System: Vectorial Case Performance

Universitat Autònoma de Barcelona

2 Lattice Network Codes

3 C&F

- 4 C&F HAMMING
- 5 Improvement of the Coefficients

6 Conclusions

HAMMING *q*-ary Codes

Generating Matrix

$$C = uG : u \in \mathbb{F}_p^k$$
.

We say that G is systematic if $G = (I_k | - P^T)$.

Parity Check Matrix

$$C = \{ v \in \mathbb{F}_p^n : Hv^T = 0 \}.$$

If G is systematic, a parity check matrix is $H = (P|I_{n-k})$.

C&F HAMMING *q*-ary Coded System Construction

HAMMING q-ary Code

Given an integer $r \ge 2$, let $n = \frac{q'-1}{q-1}$. The HAMMING q-ary code is a linear [n, n-r] code in \mathbb{F}_q^n , whose parity check matrix H is such that

 $H = (v_1|v_2|\ldots|v_n)$

where $v_1, \ldots, v_2 \in F_q^r$ is a list of nonzero vectors satisfying the condition that no two vectors are scalar multiples of each other.

Example

Let \mathbb{F}^5 and r = 2, $n = \frac{5^2-1}{5-1} = 6$. So, k = n - r = 4. A straightforward way to generate a systematic HAMMING *q*-ary code is generating the matrix *P* as a $r \times k$ matrix with columns

 $P = \left[\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{array} \right].$

And then generate H and G using $G = (I_k | - P^T)$ and $H = (P | I_{n-k})$.

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4 & 0 & 1 \end{bmatrix} \quad \text{and} \quad G = \begin{bmatrix} 1 & 0 & 0 & 0 & 4 & 4 \\ 0 & 1 & 0 & 0 & 4 & 3 \\ 0 & 0 & 1 & 0 & 4 & 2 \\ 0 & 0 & 0 & 1 & 4 & 1 \end{bmatrix}.$$

- ヘックク ヨー・ イヨ ト イヨ ト ・ ヘート

C&F HAMMING *q*-ary Coded System Performance

Universitat Autònoma de Barcelona

2 Lattice Network Codes

3 C&F

- 4 C&F HAMMING
- 5 Improvement of the Coefficients

6 Conclusions

5 Improvement of the Coefficients

- Improvement of the Coefficients: Improved Matrix A
- Improvement of the Coefficients: Optimum Matrix A
 Improvement of the Coefficients: Improved Optimum Matrix A

Improved Matrix A Performance

5 Improvement of the Coefficients

- Improvement of the Coefficients: Improved Matrix A
- Improvement of the Coefficients: Optimum Matrix A

Matrix A

Optimum Matrix A

Construction

Scalar Factor

$$\beta_{MMSE} = \frac{\text{SNRh}^{T} a_m}{\text{SNR}||h_m||^2 + 1}.$$

Optimum Coefficients

Theorem: For a given vector of coefficients of the channel $h_m = [h_{m1}, h_{m2}, \ldots, h_{mL}]^T \in \mathbb{R}^L$, the computation rate is maximized by choosing in network coding the vector of coefficients $a_m \in \mathbb{Z}^L$ as

$$a_m = \arg\min_{a_m \in \mathbb{Z}^L, a_m \neq 0} (a_m^T G_m a_m)$$

where

$$\mathsf{G}_m = \mathsf{I} - \frac{\mathrm{SNR}}{1 + \mathrm{SNR} ||\mathsf{h}_m||^2 \mathsf{H}_m}.$$

Optimum Matrix A

Construction

What's Behind this Minimization?

$$a_m = \arg\min_{a_m \in \mathbb{Z}^L, a_m \neq 0} (a_m^T G_m a_m).$$

- CHOLESKY factorization.
- Lattice reduction: LLL algorithm.
- Vector search: SCHNORR EUCHNER method.

Optimum Matrix A Solving the JLS Problem

 $\min_{z\in\mathbb{Z}^n}||y-\mathsf{B}z||^2$

this problem is analogous to solving

$$\min_{z\in\mathbb{Z}^n}(y-Bz)^TV^{-1}(y-Bz).$$

One can first compute the CHOLESKY factorization $V = R^T R$, then solve two lower triangular linear systems $R^T \overline{y} = y$ and $R^T \overline{B} = B$.

As our real aim is to solve the SVP problem

$$\min_{z \in \mathbb{Z}^n} (z)^T \nabla^{-1}(z)$$

we use $B = -l_n$ and $y = \begin{bmatrix} 0\\ \vdots\\ 0 \end{bmatrix}_n$ and therefore $\overline{B} = R^T \setminus B$ and $\overline{y} = \begin{bmatrix} 0\\ \vdots\\ 0 \end{bmatrix}_n$.
Finally the problem becomes

$$\min_{z\in\mathbb{Z}^n}||\overline{y}-\mathsf{B}z||^2.$$

De Curtò i DíAz. -- Construction and Performance of Network Codes.

Universitat Autònoma

de Barcelona

Optimum Matrix A Performance

UAB Universitat Autònoma de Barcelona

5 Improvement of the Coefficients

- Improvement of the Coefficients: Improved Matrix A
 Improvement of the Coefficients: Optimum Matrix A
- Improvement of the Coefficients: Improved Optimum Matrix A

Improved Optimum Matrix A Performance

UNIVERSITATION CONTRACTOR OF CONTACTOR OF CONTRACTOR OF CONTACTOR OF CONTACTOR OF CONTACTOR OF CONTA

2 Lattice Network Codes

3 C&F

- 4 C&F HAMMING
- 5 Improvement of the Coefficients

6 Conclusions

Conclusions

- Mathematical tools.
- C&F uncoded system model scalar:
 - MATLAB *L*-dimensional $\forall p$ implementation using a working L = 2, p = 5 code base with given ML detector. \checkmark
- C&F uncoded system model vectorial:
 - MATLAB implementation *n*-dimensional. $\sqrt{}$
- **C**&F HAMMING *q*-ary coded system model:
 - MATLAB implementation C&F HAMMING (6,4) coded system n = 4. $\sqrt{}$
- Improvement of the Coefficients:
 - \blacksquare MATLAB implementation improved matrix A. \surd
 - \blacksquare MATLAB implementation optimum matrix A. \surd
 - \blacksquare MATLAB implementation improved optimum matrix A. \surd
- Implementation of sphere decoder for ML detection:
 - \blacksquare Adapting the code used for optimum matrix A as an efficient sphere decoder. \checkmark

Conclusions

Obtained Results

- We have explained the lattice theory needed.
- We have provided several MATLAB code implementations for C&F system.
- The results of the improvement of the coefficients show:
 - Improved optimum matrix A works really well for SNR low.
 - Improved matrix A has a better slope performance for SNR high.

DE CURTÓ I DÍAZ Joaquim. Thank you.